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Abstract

GRASP is a Greedy Randomised Adaptive Sampling Procedure that has been proposed to
estimate parameters of self-exciting autoregressive threshold models (SETARs) with mul-
tivariate thresholds. We show that the GRASP procedure can often lead to an incorrect
number of thresholds when estimating SETARs. Two simple modifications of the original
GRASP procedure are suggested to overcome this problem.
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1 Introduction

Assume that a univariate and stationary time series {Yt} follows a so-called self-exciting thresh-

old autoregressive (SETAR) process; see, e.g., Tong (1990). It is well-known that the dynamics

of this process are controlled by a single threshold variable Yt−d with d > 0 an integer value

denoting the delay. Tiao and Tsay (1994) generalized the single threshold SETAR process to

a model having two threshold variables, one for Yt−d and another for Yt−d − Yt−d′ with d ̸= d′.

Thus, the relationship between Yt−d and Yt−d′ is linear and the parameters, here 1 and -1, are

known. A more flexible SETAR formulation can be obtained by assuming the relationship be-

tween Yt−d and Yt−d′ still linear but the parameters are unknown. To put this into a general

framework, consider an q-dimensional Euclidean space IRq and a point x in that space. Let

ω = (ω1, . . . , ωq)
′ denote a q-dimensional unknown parameter vector. These parameters define a

hyperplane as follows IH = {x ∈ IRq|ω′x = β}, where β is a scalar parameter. The direction of ω

determines the orientation of the hyperplane whereas β represents the position of the hyperplane

in terms of its distance from the origin. The hyperplane IH induces a partition of the space into

two regions defined by the half spaces IH− = {x ∈ IRq|ω′x ≤ β} and IH+ = {x ∈ IRq|ω′x > β}.

In terms of the indicator function Iω,β(x), the above partitioning can be written as Iω,β(x) = 1

if x ∈ IH−, and zero otherwise.

Now, assume that an q-dimensional space is spanned by the vector of time series values

Ỹ t = (Yt−1, . . . , Yt−q)
′. Further, suppose that there are ℓ functions Iωj ,βj

(Ỹ t) (j = 1, . . . , ℓ)

where ωj = (ω1j , . . . , ωqj)
′ and βj are real parameters. Thus, each of these functions defines a

threshold. Then a SETAR model with q > 1 (multivariate) thresholds and order (ℓ; p, . . . , p),

denoted by SETAR(ℓ; p, . . . , p)q, is defined as

Yt = γ0 +
p∑

i=1

γiYt−i +
ℓ∑

j=1

{
λ
(j)
0 +

p∑
i=1

λijYt−i

}
Iωj ,βj

(Ỹ t) + εt

= γ ′Y t +
ℓ∑

j=1

λ′
jY tIωj ,βj

(Ỹ t) + εt (1)

where γ = (γ0, . . . , γp)
′, λj = (λ0j , . . . , λpj)

′, Y t = (1, Yt−1, . . . , Yt−p)
′, and where {εt} is a

white noise process with zero mean and finite variance σ2. Note that (1) is not identified. For

identification purpose the restrictions β1 ≤ . . . ≤ βℓ is imposed. Further, due to the fact that

Iωj ,βj
(·) = 1 − I−ωj ,−βj

(·), a convenient normalization condition is to set one element of ωj

equal to unity, e.g. ω1j = 1. If needed, (1) can be further generalized by allowing for interactions

between the ℓ functions Iωj ,βj
(Ỹ t).
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Estimation of (1) can be done by conditional least squares (CLS) or maximum likelihood

once the parameters ωj and βj have been determined. Often, however, ωj and βj are unknown.

Then the total number of possible hyperplanes to search is n!/q!(n − q)!, where n denotes the

number observations on {Yt}. Of course, for most practical problems a search over all possible

combinations of hyperplanes is infeasible. To solve this problem, Medeiros, Veiga and Resende

(2002) proposed a procedure based on a greedy randomized adaptive search procedure (GRASP).

GRASP can be used to solve optimization problems which have a high number, but not infinite,

of possible solutions; see Section 2 for some details.

In this paper, the potential of the GRASP algorithm in estimating SETARs with multivariate

thresholds is investigated. We show that the algorithm often results in an incorrect number

of thresholds when the time series under study are of moderate length. To overcome this

problem, we propose two modifications of the GRASP algorithm. These modifications result in

an improvement in model fit without increasing the computational burden.

This paper is organized as follows. In Section 2, we briefly review GRASP and its adaptation

for estimating SETARs with multivariate thresholds. This section also contains two modifica-

tions of the basic GRASP algorithm. Section 3 shows results of a comparative simulation study.

Section 4 concludes.

2 GRASP for SETARs

2.1 What is GRASP

GRASP is a multi-start iterative randomized sampling technique that can be used to quickly

produce good quality solutions for a wide variety of optimization problems. The algorithm was

originally proposed by Feo and Resende (1995) and Resende (1999). GRASP does not try all

possible solutions and then finds the best one for the problem at hand. This approach would

be far from good computing practice. In particular, when the number of possible solutions is

high due to the fact that a large data set is analysed there is the risk that the processor cannot

manage. In contrast, the GRASP algorithm is based on the idea that it is better to have a faster

solution than one slower even if the solution is slightly bad. This basic characteristic makes the

algorithm particularly useful for analysing various real life problems. Examples include designing

efficient telecommunication networks, scheduling operations in a semiconductor manufacturing

plant, locating strategic energy reserves, routing delivery vehicles, airline crew scheduling, and

designing large experiments.
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procedure (GRASP)
N = maximum number of grasp iterations
for i = 1 to N
procedure (MAKE RANDOM SUBSET)
procedure (CONSTRUCTION PHASE)
procedure (LOCAL SEARCH PHASE)
next i

Figure 1. Generic GRASP

Figure 1 shows, as a pseudocode, the generic GRASP algorithm used by Medeiros et al.

(2002) for the estimation of (1). The procedure “make random subset” is only a preliminary

one which selects the elements which could enter the solution set randomly; it is also used to

reduce the computational burden of the algorithm. In the construction phase a feasible solution

is iteratively constructed, one element at a time; see Figure 2 for the pseudo-code. The restricted

candidate list (RCL) makes a partial screening of the elements which could enter the solution

set. Thus, the GRASP algorithm does not choose an element randomly. Rather GRASP tries

to select a solution near the best one. All candidate elements which could be in the solution

set are classified with a greedy function. In the case of SETARs Medeiros et al. (2002) use the

mean square error (MSE) as a greedy function to calculate the hyperplane or hyperplanes which

constitute the solution set. Those elements which have a value of the greedy function below a

prespecified threshold are selected as elements of the RCL set.

procedure (CONSTRUCTION PHASE)
do
Create an RCL set.
Add one RCL element to the solution.
loop until the solution is completed.

Figure 2. Construction phase procedure

procedure (LOCAL SEARCH PHASE)
do
Select one solution in the neighbourhood.
If this solution has a larger SBIC value than the
previous one reject it, else take this solution
as the optimal one.
loop until the neighbourhood is fully analysed.

Figure 3. Local search phase procedure

In the local search phase a solution is replaced by a “better” one in the neighbourhood of

the solution found in the construction phase; see Figure 3 for a possible implementation. For

SETARs Medeiros et al. (2002) recommend the use of Schwarz’ BIC which in this case is defined

as

SBIC(ℓ) = ln(σ̂2) + n−1 ln(n)
{
ℓ(p+ q + 1) + p

}
,
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where σ̂2 is an estimate of σ2, and n is the sample size. The GRASP procedure for SETARs is

initialized with CLS estimates for the unknown parameters. At each iteration step, the GRASP

procedure computes thresholds. In the next step it uses again CLS to estimate the parameters

of the specified model.

2.2 Two modifications of GRASP

Medeiros et al. (2002, Section 6) showed in a Monte Carlo study that the basic GRASP algorithm

for SETARs, using SBIC in the local search phase, has a strong tendency for selecting an incorrect

number of thresholds when n ≤ 100. This is confirmed by the results of the simulation study

presented in the next Section. One modification to overcome this problem is to recalculate

SBIC backward for every possible combination of hyperplanes estimated previously; see Figure

4. To illustrate this idea, consider the case with three possible hyperplanes. In the first step the

modified GRASP algorithm calculates the value of SBIC with a SETAR model having only one

hyperplane. Next, this is done with the second hyperplane. Then the value of SBIC is computed

for the third, the first and the second, the first and the third, and finally all three hyperplanes.

In this way it is unlikely that any threshold can be removed without seriously degrading the fit

of the SETAR model. The resulting GRASP algorithm will be denoted by “basic+SBIC”.

procedure (SBIC RECALCULATION)
Calculates the 2n possible hyperplanes combina-
tions.
for i = 1 to 2n

Calculate SBIC for this combination.
next i

Figure 4. SBIC recalculation procedure

A second modification concerns the two-exchange local search, where a hyperplane IH in the

solution set is replaced by another hyperplane that is not in the solution set. To this end, the

local search is divided two main blocks. The first block rotates each hyperplane in the solution

set whereas the second one translates each hyperplane. For each hyperplane IH, the second block

implies replacing βj by the elements of the projection ω′
jxj (j = 1, . . . , ℓ). Clearly, the weakness

of this approach lies in the fact that the search for optimal values of ωj and βj is done separately

rather than jointly. In fact, by proceeding as described above, it is unlikely that ωj and βj are

optimized. On the other hand, a procedure that numerically optimizes these parameters jointly

is hard to implement and is computationally time consuming.
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A simple procedure to improve the estimation of ωj and βj is to start from the previous

solution, say ω∗
j and β∗

j with ω∗
j = (ω∗

1j , . . . , ω
∗
qj)

′. Then the idea is to allow for a little change,

by increasing and decreasing the values of ω∗
2j/ω

∗
1j , . . . , ω

∗
qj/ω

∗
1j with some small number. Next,

for each variation in the slope, ωj and βj are re-estimated. The best combination of parameters

is chosen as the one which has the smallest MSE. The resulting modified GRASP algorithm will

be denoted by “basic+SBIC+slope”. Both modifications of GRASP are shown, in pseudo-code,

in Figure 5.

procedure (GRASP)
N = maximum number of grasp iterations
for i = 1 to N
procedure (MAKE RANDOM SUBSET)
procedure (CONSTRUCTION PHASE)
procedure (LOCAL SEARCH PHASE)
next i
procedure (SBIC RECALCULATION)
procedure (SLOPE RECALCULATION)

Figure 5. Generic GRASP modified

3 Simulated Examples

Example 1. Consider the SETAR model

Yt =

 −0.95Yt−1 + εt, if |Yt−1 − Yt−2| ≥ 0.7

0.95Yt−1 + εt, otherwise,
(2)

where εt ∼ NID(0, σ2). Model (2) is a SETAR(2; 1, 1)2 model. It can be rewritten as follows

Yt = 0.95Yt−1 − 1.9Yt−1Iω1,β1(Ỹ t) + 1.9Yt−1Iω2,β2(Ỹ t) + εt. (3)

It is easy to see that, in terms of model (1), we have γ = (0, 0.95)′, λ1 = −λ2 = (0, 1.9)′,

ω1 = ω2 = (1, −1)′, Ỹ t = (Yt−1, Yt−2)
′, and β1 = −β2 = −0.7.

Figure 6.a) shows n = 500 simulated observations from model (3) with εt ∼ NID(0, (0.25)2).

To avoid start-up problems 500 observations were deleted from the simulated series. Note that

the dynamics of model (3) is controlled by two bidimensional thresholds. The first one when

Yt−1 − Yt−2 = −0.7 and the second one when Yt−1 − Yt−2 = 0.7. The number of thresholds is 2,

and the total number of hyperplanes is 124750. Using q = 2, Table 1 shows estimated values of

ω′
j and βj (j = 1, 2) for the best fitted model found for respectively p = 1, 2, and 3. The SBIC
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Figure 6: a) Time series generated by (3); b) Scatter plot of Yt versus Yt−1 and estimated (solid

lines) separating hyperplanes.

attains its lowest value for the estimated SETAR(2; 1, 1)2 model

Yt = 0.009 + 0.956Yt−1 + (−0.082 + 1.937Yt−1)Iω1,β1(Ỹ t)

+ (0.005− 1.894Yt−1)Iω2,β2(Ỹ t) + ε̂t.

The parameter values of γ0, λ
(1)
0 , and λ

(2)
0 are not statistically different from zero at the 5% level.

Figure 6.b) shows the scatter plot of Yt versus Yt−1 and the estimated hyperplanes. We see that

the basic GRASP procedure has correctly identified the position of the separating hyperplanes.

Table 1: Estimated parameters ω′
j and βj (j = 1, 2) for three SETAR(2; p, p)2 models fitted to

a simulated series of length n = 500, and the corresponding SBIC values.

p ω̂′
1 ω̂′

2 β̂1 β̂2 SBIC

1 (1.000, -0.993) (1.000, -1.013) 0.657 -0.701 -2.575

2 (1.000, -1.006) (1.000, -1.013) 0.660 -0.701 -2.524

3 (1.000, -0.967) (1.000, -1.192) 0.746 -0.705 -2.556

To investigate whether the above results for (3) still hold for smaller sample sizes, we gener-

ated series of length n = 100. Table 2 shows the mean and standard deviations of the estimated

model parameters using the basic, basic+SBIC, and basic+SBIC+slope algorithms. For the

basic algorithm the estimation results for σ = 0.5 (σ = 1) are based on 88 (97) replications. For

the basic+SBIC and basic+SBIC+slope algorithms the number of replications is 89 (102) for

σ = 0.5 (σ = 1). Note that in terms of bias and accuracy, as measured by respectively the mean
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Table 2: Mean and standard deviations (in parentheses) of the parameter estimates of model

(2) with σ = 0.5 and 1 using three GRASP algorithms; n = 100.

True parameters σ = 0.5 σ = 1

Basic Basic+SBIC Basic+SBIC Basic Basic+SBIC Basic+SBIC

+ slope + slope

γ0 = 0 -0.028 -0.030 -0.031 0.124 0.111 -0.097
(0.214) (0.214) (0.210) (1.742) (1.705) (0.339)

γ1 = 0.95 0.953 0.953 0.954 0.943 0.939 0.892
(0.126) (0.126) (0.123) (0.258) (0.255) (0.119)

β1 = 0.7 0.712 0.714 0.708 0.749 0.752 0.688
(0.116) (0.117) (0.103) (0.206) (0.206) (0.249)

β2 = −0.7 -0.752 -0.751 -0.749 -0.720 -0.721 -0.717
(0.257) (0.256) (0.256) (0.154) (0.153) (0.162)

λ01 = 0 0.002 0.005 0.011 -0.082 -0.083 0.180
(0.236) (0.237) (0.229) (1.682) (1.646) (0.417)

λ11 = 1.9 1.9243 1.923 1.930 1.832 1.848 1.690
(0.282) (0.281) (0.272) (0.485) (0.509) (0.658)

λ02 = 0 0.088 0.088 0.083 -0.009 -0.004 -0.029
(0.245) (0.244) (0.251) (0.477) (0.468) (0.500)

λ12 = −1.9 -1.837 -1.835 -1.847 1.750 1.766 1.676
(0.338) (0.336) (0.330) (0.486) (0.504) (0.669)

ω12 = −1 -1.007 -1.007 -1.004 -1.001 -0.999 -1.013
(0.072) (0.072) (0.069) (0.141) (0.138) (0.136)

ω22 = −1 -0.984 -0.984 -0.982 -0.989 -0.988 -0.998
(0.220) (0.218) (0.219) (0.071) (0.070) (0.073)

and the standard deviation of the estimated parameters, the basic+SBIC algorithm improves

over the basic GRASP algorithm. For larger values of n we observed that both algorithms give

more or less the same estimation results. We also see from Table 2 that the improvement of the

basic+SBIC+slope algorithm over the previous two algorithms is limited.

Table 3 gives another view on the performance of the basic– and basic+SBIC algorithms

for σ = 0.25, 0.5 and 1, with n = 100. Here the number of thresholds selected by these

two algorithms are reported. Since in all cases the number of thresholds selected by the ba-

sic+SBIC+slope algorithm were identical to those obtained by the basic+SBIC algorithm we

only included the latter results. Clearly, for increasing values of σ the basic+SBIC algorithm

does a much better job in identifying the correct number of thresholds than the basic algorithm.

Example 2. Consider the SETAR(2; 2, 2)2 process

Yt = 1.5 + 0.5Yt−1 − 0.8Yt−2 + (4− 0.4Yt−1 + 0.2Yt−2)Iω1,β1(Ỹ t)

+ (3 + 0.5Yt−1 − 0.2Yt−2)Iω2,β2(Ỹ t) + εt (4)

7



Table 3: Thresholds selected by two GRASP algorithms for σ = 0.25, 0.5 and 1; n = 100, 112

replications.

Thresholds σ = 0.25 σ = 0.5 σ = 1

Basic Basic+SBIC Basic Basic+SBIC Basic Basic+SBIC

0 20 20 11 11 3 3

1 16 16 6 6 2 2

2 40 40 88 89 97 102

3 36 36 7 6 5 3

4 0 0 0 0 5 2

with parameters γ = (1.5, 0.5, −0.8)′, λ1 = (4, −0.4, 0.2)′,λ2 = (3, 0.5, −0.2)′, ω1 = ω2 =

(−1, 0)′, Ỹ t = (Yt−1, Yt−2)
′, and β1 = 0, β2 = −0.7. In other words, the dynamics of model

(4) is controlled by two bidimensional thresholds. Table 4 shows the mean and standard devia-

tions of the estimated model parameters using the basic, basic+SBIC, and basic+SBIC+slope

algorithms. For the basic algorithm the estimation results for σ = 0.5 (σ = 1) are based on

56 (89) replications. For the basic+SBIC and the basic+SBIC+slope algorithms the number

of replications is 59 (91) for σ = 0.5 (σ = 1). Note that in terms of bias and accuracy, as

measured by respectively the mean and the standard deviation of the estimated parameters, the

basic+SBIC algorithm improves over the basic algorithm. For larger values of n we observed

that both algorithms give more or less the same estimation results. We also see from Table 4

that the improvement of the basic+SBIC+slope algorithm over the previous two algorithms is

limited. Table 5 shows the performance of the basic– and basic+SBIC algorithms for σ = 0.25,

0.5 and 1, with n = 100. The results are similar to those reported in Table 3, i.e. for increasing

values of σ the basic+SBIC algorithm outperforms the basic algorithm. In terms of computa-

tional effort, the basic+SBIC+slope algorithm takes about 1.5 more time than the other two

algorithms. In contrast, the increase in accuracy of the basic+SBIC algorithm over the basic

algorithm does not require extra computational time.

4 Conclusions

The basic+SBIC GRASP algorithm, as a modification of the basic GRASP algorithm, is rec-

ommended for estimating SETARs with multivariate thresholds. In particular, the modified

GRASP algorithm, is useful when the sample size is relatively small.
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Table 4: Mean and standard deviations (in parentheses) of the parameter estimates of model

(4) with σ = 0.5 and 1 using three GRASP algorithms; n = 100.

True parameter σ = 0.5 σ = 1

Basic Basic+SBIC Basic+SBIC Basic Basic+SBIC Basic+SBIC

+ slope + slope

γ0 = 1.5 1.760 1.623 1.543 1.448 1.452 1.528
(0.745) (0.714) (0.585) (0.793) (0.798) (0.616)

γ1 = 0.5 0.553 0.528 0.513 0.480 0.487 0.496
(0.132) (0.128) (0.104) (0.131) (0.130) (0.108)

γ2 = −0.8 -0.814 -0.801 -0.800 -0.805 -0.803 -0.809
(0.066) (0.064) (0.054) (0.074) (0.072) (0.048)

β1 = 0 1.070 0.782 0.727 0.589 0.309 0.045
(1.405 ) (1.504) (1.438) (1.237) (1.222) (0.951)

β2 = −0.7 -0.531 -0.614 -0.614 -0.767 -0.745 -0.708
(0.104) (0.360) (0.360) (0.502) (0.500) (0.5666)

λ01 = 4 3.811 3.916 3.982 4.022 4.008 3.860
(0.663) (0.676) (0.584) (0.563) (0.523) (0.566)

λ11 = −0.4 -0.359 -0.367 -0.366 -0.435 -0.434 -0.431
(0.044) (0.062) (0.063) (0.104) (0.103) (0.113)

λ12 = 0.2 0.113 0.141 0.155 0.2512 0.241 0.230
(0.145) (0.161) (0.145) (0.139) (0.132) (0.119)

λ02 = 3 2.898 2.983 2.998 3.107 3.105 3.122
(0.330) (0.291) (0.258) (0.358) (0.350) (0.361)

λ21 = 0.5 0.485 0.486 0.480 0.522 0.501 0.517
(0.030) (0.039) (0.039) (0.105) (0.102) (0.087)

λ22 = −0.2 -0.182 -0.191 -0.191 -0.208 -0.207 -0.208
(0.029) (0.037) (0.037) (0.066) (0.065) (0.060)

ω12 = −1 -0.895 -0.929 -0.928 -0.961 -0.960 -1.011
(0.139) (0.142) (0.144) (0.122) (0.121) (0.097)

ω22 = 0 0.016 0.032 0.032 0.038 0.038 0.003
(0.028) (0.053) (0.053) (0.100) (0.099) (0.112)

Table 5: Thresholds selected by two GRASP algorithms for σ = 0.25, 0.5 and 1, and with

n = 100; 112 replications.

Thresholds σ = 0.25 σ = 0.5 σ = 1

Basic Basic+SBIC Basic Basic+SBIC Basic Basic+SBIC

0 0 0 0 0 0 0

1 2 2 17 17 18 18

2 40 50 56 59 89 91

3 68 59 39 36 5 3

4 2 1 0 0 0 0
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