
Wojciech W. Charemza*) and Svetlana Makarova**)

Blini
Version 1.03

Collection of GAUSS procedures for linear and bilinear unit root analysis

*) University of Leicester, U.K.

wch@le.ac.uk

**) European University at St. Petersburg, Russia

makarova@eu.spb.ru

Address for correspondence:

Department of Economics

University of Leicester

University Road

Leicester LE1 7RH

U.K.

Preliminary version: not finished and not fully tested

January 2002

Financial support of the INTAS99 – 00472 Project Nonlinear Structural VAR Modelling of

East European Economies is gratefully acknowledged. All usual disclaimers apply.

mailto:wch@le.ac.uk

Introduction

BLINI1 is a collection of procedures written in GAUSS, which accompany Charemza,

Lifshits and Makarova (2001) paper. The procedure can be used in empirical analysis of the

linear and blinear unit root processes. Currently there are two files of the procedures, which

does not contain a proper GAUSS library. They should be simply #INCLUDE’d at the

beginning of a file containing a GAUSS program.

The first file, PELMENI2, contains simple and fast procedures, suitable for Monte

Carlo analysis and other tasks requiring heavy computations. The procedures included in

PELMENI are for simulation bilinear processes (BLIN), simple Student-t test for a linear

regression model (TTEST), simple Dickey-Fuller test (DF), Leybourne (1995) DFmax test,

b-test for testing bilinearity of a unit root process (BTEST), bmax test, which is a Leybourne-

type bilinearity test (BLTEST), and the kurtosis-corrected equivalents to the b-test and bmax

tests (BTESTK and BLTESTK).

The second file, BIGOS3, is a collection of slower, but more elaborated, procedures

suitable for a thorough empirical analysis. They are mainly the augmented tests where the

augmentations are selected accordoing to the general to specific methodology. They are: the

augmented Dickey-Fuller test, ADFH, augmented DFmax test (LEYBH), KPSS test with an

automatic selection of autocorrelation lags (KPSSH) and augmented b and bmax tests

(BTESTH and BTLEH). Moreover the file contains the augmented b and bmax tests in which

the kurtosis correction has been imposed (BTESTHK and BTLEHK). It also includes

procedure for detecting structural breaks (additive and innovative outliers) in unit root

1 Take 1 egg and 3 teaspoons of sugar and mix them together. Add a little milk and a tablespoon of flour and

stir. Dilute with more milk, add a tablespoon of flower, mix and make a pancake. Then bake. Serve with
herrings, slightly smoked fish or caviar and a glass of ice-cold Stolichna.

2 Make a dense pastry. Roll in a thin layer. Cut into small squares. Put a special stuffing made with. low-fat
beef and pork in the middle of each square. Roll up like raviolis and freeze. Boil straight from the freezer.
Serve with a proper Russian Smirnoff (beware of Western imitations!)

3 Take good quality sauerkraut and cabbage, add wild mushrooms and browned diced beef, pork and
continental sausages. Mix well, cook very slowly for about 4 hours. Leave aside for at least two days, then
reheat and serve with a glass of a Polish herbal vodka (Soplica, Zubrówka or Jarzębiak).

2

series. They are the Perron additive and innovative outliers procedures which assume that a

breakpoint is known (PERR_AO and PERR_IO) and analobous procedures which

sequentially detect and test a structural break in case where the breakpoint is not known

(AO_TEST and IO_test).

The procedures have been tested using GAUSS 3.2.15 of June 11, 1996. It appears that

they are performing well in GAUSS for Windows under Windows 2000, kernel review

3.5.14, GUV review 3.4.11. No further testing has been done.

3

Pelmeni
proc (1) = blin(e,a,b);

This is a procedure for simulation of a bilinear process of the type: y(t) =(a + b*e(t-1))*y(t-1) + e(t).

inputs: e: vector of random numbers

a,b: coefficients

output: y(t), simulated vector of data, n x 1

proc (1) = ttest(y,x,d);

This is a procedure for computing a single variable Student-t statistic in a static regression model.

inputs: y: a series of data, n x 1

x: a series of data, n x 1

d if 1: constant in b-test is included, otherwise it is not

output: Student-t statistic for parameter on x

proc (1) = df(y,d);

This is a procedure for computing a simple Dickey-Fuller test.

inputs: y: a series of data, n x 1

d: if 1: constant in the Dickey-Fuller equation is included, otherwise it is not

output: Student-t Dickey-Fuller statistic

proc (1) = leyb(y,d);

This is a procedure for computing the Leybourne DFmax test, see Leybourne (1995), Maddala and

Kim(1998), p. 111.

inputs: y: a series of data, n x 1

d: if 1: constant in both forward and reverse Dickey-Fuller equation is included,

otherwise it is not

output: DFmax statistic

4

proc (1) = btest(y,d);

This is a procedure for computing a b-test, that is, regressing Dy(t) on e(t-1)*y(t-1) and computing

the Student-t test.

inputs: y: a series of data, n x 1

d: if 1: constant is included

if 0: constant is not included

output: Student-t statistic for b parameter

proc bltest(y,d);

This is a procedure for computing the Leybourne-type b-test. It computes the b-test statistics for the

forward and backward-ordered data and taking their maximum (see Charemza, Lifshits and

Makarova (2001)).

inputs: y a series of data, n x 1

d if 1: constant is included

if 0: constant is not included

output: b-test max statistic

proc (2) = btestk(y,d,g);

This is a procedure for computing the b-test adjusted for kurtosis (see Charemza, Lifshits and

Makarova (2001).

inputs: y: a series of data, n x 1

d: if 1: constant is included

if 0: constant is not included

if 9: returns are demeaned

g: constant for kurtosis-adjustment (0.5 is currentlyrecommended)

outputs: Student-t statistic for the b parameter

Information about the kurtosis-adjustment:

0: no adjustment was made (kurtosis < g)

1: adjustment was made (kurtosis > g)

5

proc(2) = bltestk(y,d,g);

This is a procedure for computing a Leybourne-type b-test and adjusting the t-statistic for kurtosis

(see Charemza, Lifshits and Makarova (2001)).

inputs: y: a series of data, n x 1

d: if 1: constant is included

if 0: constant is not included

if 9: returns are demeaned

g : constant for kurtosis-adjustment (0.5 is currently recommended)

outputs: b-test max statistic

Information about the kurtosis-adjustment:

0 : no adjustment was made (kurtosis < 0.5)

1 : adjustment was made (kurtosis > 0.5)

proc (1) = btestm(y,d);

This is a procedure for computing a b-test on partially demeaned data that is, regressing ∆yt on

∆zt-1yt-1 , where ∆zt is the demeaned series of ∆yt .

inputs: y a series of data, n x 1

d if 1: constant is included

if 0: constant is not included

output: Student-t statistic for b parameter

proc (1) = btestd(y,d);

This is a procedure for computing a b-test on partially demeaned data that is, regressing delta[y(t)]

on delta[z(t-1)]*z(t-1)., where zt is a series of cumulated demeaned series of ∆yt .

inputs: y a series of data, n x 1

d if 1: constant is included

if 0: constant is not included

output: Student-t statistic for b parameter

6

proc (1) = bltestm(y,d);

This is a procedure for computing a Leybourne-type partially demeaned b-test

inputs: y a series of data, n x 1

d if 1: constant is included

if 0: constant is not included

output: b-test max statistic

proc (1) = bltestd(y,d);

This is a procedure for computing a Leybourne-type fully demeaned b-test

inputs: y a series of data, n x 1

d if 1: constant is included

if 0: constant is not included

output: b-test max statistic

7

Bigos

proc (3) = adfh(y, d, k, crit, pr);

This is a procedure for computing Augmented Dickey-Fuller test with the selection of lags similar

to Hall (1994) general to specific method. The selection of lags is according to the 'significant'

Student-t statistics on augmentations.

inputs: y: a series of data, n x 1

d: if -1: no constant and no time trend in the Dickey-Fuller equation is included

if 0: constant in the Dickey-Fuller equation is included

if 1: constant and linear time trend in the Dickey-Fuller equation is included

if 2: constant, linear and quadratic time trend in the Dickey-Fuller equation is

included

k: maximum lag length

crit: critical value for selection

pr if 1: warning about the significance of the deterministic part is printed

outputs: t: Student-t Dickey-Fuller statistic

kv: vector which identifies particular significant lags in augmentation

tp: vector which identifies insignificant of constant and time trend in the Dickey-

Fuller equation; returns -99 if constant and time trends are significant at the

'crit' level or if they are not included.

proc (4) = leybh(y, d, k, crit, pr);

This is a procedure for computing Augmented DFmax (Leybourne) test with the selection of lags

similar to Hall (1994) general to specific method (see Leybourne (1995), Maddala and Kim (1998),

p.111). The selection of lags is according to the 'significant' Student-t statistics on augmentations.

inputs: y: a series of data, n x 1

d: if -1: no constant and no time trend in the Dickey-Fuller equation is included

if 0: constant in the Dickey-Fuller equation is included

if 1: constant and linear time trend in the Dickey-Fuller equation is included

if 2: constant, linear and quadratic time trend in the Dickey-Fuller equation is

included

k: maximum lag length

8

crit: critical value for selection

pr if 1: warning about the significance of the deterministic part is printed

outputs: t: Student-t Dickey-Fuller statistic

kv: vector which identifies particular significant lags in augmentation

tp: vector which identifies insignificant of constant and time trend in the Dickey-

Fuller equation; returns -99 if constant and time trends are significant at the

'crit' level or if they are not included.

ind1: "forward", if DFmax statistic was achieved in forward regression

"backward", if DFmax statistic was achieved in backward regression

proc(2)=kpssh(y,l,d);

This is a modification of the KPSS procedure by David Rapach of 27 May 1996 as posted in the

GAUSS archive (see Isaac and Rapach (1996)). It computes the KPSS statistics for lags from 0 to p

and returns the highest statistic. See Kwiatkowski at al. (1992), Maddala and Kim (1998), pp. 120-

122.

inputs: y vector of data, n x 1

l maximum order of autocorrelation

d if 0: test with a constant

if 1: test with a constant and a linear trend

outputs: kpstat: maximum KPSS statistic

lag: scalar denoting the lag length associated with the maximum KPSS statistic

proc (3) = btesth(y, d, k, crit, pr);

This is a procedure for computing an augmented b-test that is, regressing delta[y(t)] on e(t-1)*y(t-1)

and constant, linear and quadratic trends (if selected), and augmentations: delta[y(t-1)], delta[y(t-2)]

etc. with the selection of lags similar to Hall (1994) general to specific method. The selection of

lags is according to the 'significant' Student-t statistics on augmentations. See Charemza, Lifshits

and Makarova (2001)).

inputs: y: vector of data, n x 1

d: if -1: no constant and no time trend is included

if 0: constant is included

if 1: constant and linear time trend is included

9

if 2: constant, linear and quadratic time trend are included

k: maximum lag length

crit: critical value for selection

pr: if 1: warning about the significance of the deterministic part is printed

outputs: t: Student-t statistic

kv: vector which identifies particular lags in augmentation

tp: vector which identifies insignificant of constant and time trend; returns -99 if

constant and time trends are significant at 'crit' level or if they are not

included.

proc (4) = btleh(y, d, k, crit, pr);

This is a procedure for computing an augmented Leybourne style b-test (b-max test) that is, it

computes the augmented b-test statistics (se the procedure BTESTH above) for the forward and

backward-ordered data and takes their maximum (see Charemza, Lifshits and Makarova (2001)).

The selection of lags is according to the 'significant' Student-t statistics on augmentations. See

Charemza, Lifshits and Makarova (2001)).

inputs: y: vector of data, n x 1

d: if -1: no constant and no time trend is included

if 0: constant is included

if 1: constant and linear time trend is included

if 2: constant, linear and quadratic time trend are included

k: maximum lag length

crit: critical value for selection

pr: if 1: warning about the significance of the deterministic part is printed

outputs: t: Student-t statistic

kv: vector which identifies particular lags in augmentation

tp: vector which identifies insignificant of constant and time trend; returns -99 if

constant and time trends are significant at 'crit' level or if they are not

included.

ind1: "forward", if b-max statistic. was achieved in forward regression

"backward", if b-max statistic was achieved in backward regression

10

proc (4) = btesthk(y, d, k, crit, pr, g);

This is a procedure for computing an augmented and kurtosis corrected b-test that is, regressing

delta[y(t)] on e(t-1)*y(t-1) and constant, linear and quadratic trends (if selected), and

augmentations: delta[y(t-1)], delta[y(t-2)] etc. with the selection of lags similar to Hall (1994)

general to specific method. The selection of lags is according to the 'significant' Student-t statistics

on augmentations. See Charemza, Lifshits and Makarova (2001)).

inputs: y: vector of data, n x 1

d: if -1: no constant and no time trend is included

if 0: constant is included

if 1: constant and linear time trend is included

if 2: constant, linear and quadratic time trend are included

k: maximum lag length

crit: critical value for selection

pr: if 1: warning about the significance of the deterministic part is printed

g: constant for kurtosis adjustment (0.5 is currently recommended)

outputs: t: Student-t statistic

kv: vector which identifies particular lags in augmentation

tp: vector which identifies insignificant of constant and time trend; returns -99 if

constant and time trends are significant at 'crit' level or if they are not

included.

Ik: scalar which identifies whether the kurtosis correction was binding.

if 0: no binding correction

if 1: the correction is binding

proc (4) = btlehk(y, d, k, crit, pr, g);

This is a procedure for computing an augmented and kurtosis corrected b-test that is, regressing

delta[y(t)] on e(t-1)*y(t-1) and constant, linear and quadratic trends (if selected), and

augmentations: delta[y(t-1)], delta[y(t-2)] etc. with the selection of lags similar to Hall (1994)

general to specific method. The selection of lags is according to the 'significant' Student-t statistics

on augmentations. See Charemza, Lifshits and Makarova (2001)).

11

inputs: y: vector of data, n x 1

d: if -1: no constant and no time trend is included

if 0: constant is included

if 1: constant and linear time trend is included

if 2: constant, linear and quadratic time trend are included

k: maximum lag length

crit: critical value for selection

pr: if 1: warning about the significance of the deterministic part is printed

g: constant for kurtosis adjustment (0.5 is currently recommended)

outputs: t: Student-t statistic

kv: vector which identifies particular lags in augmentation

tp: vector which identifies insignificant of constant and time trend; returns -99 if

constant and time trends are significant at 'crit' level or if they are not

included.

Ik: scalar which identifies whether the kurtosis correction was binding.

if 0: no binding correction

if 1: the correction is binding

proc (3) = per_ao(y, b, k, crit);
This is a procedure for computing augmented Perron Additive Outlier (Crash) test with the

selection of lags similar to Hall (1994) general to specific method. The selection of lags is

according to the 'significant' Student-t statistics on augmentations.

The break time is assumed to be known

inputs: y: a series of data, n x 1

b: time index indicating the breakpoint, b < n

k: maximum lag length

crit: critical value for selection

outputs: t: Perron Additive Outlier (AO) statistic

tt: Student-t statistic for the spike

kv: vector which identifies particular lags in augmentation

12

proc (3) = ao_test(y, out, kp, critp, d);

This is a procedure for computing an Additive Outlier (Crash) test in case of an unknown single

break. It computes sequentially the Perron test (procedure per_ao) and chooses the best break

according to the Zivot and Andrews(1992, JBEA) or Vogelsang and Perron (1998, IER) criteria.

It requires the procedure per_ao to be placed ABOVE this on in the program.

inputs: y: a series of data, n x 1

out: time index indicating the fraction of first and last observations which have to

be discarded while testing

kp: maximum lag length

critp: critical value for selection

d: selector variable

if d = 0, the Zivot-Andrews selection is performed

if d = 1, the Vogelsang-Perron selection is performed

(inputs kp and critp are required by the included per_ao procedure)

outputs: t: final value of the test statistic

tt: Student-t statistic for the 'crash' dummy variable (spike)

b: number of the break in the series

proc (4) = per_io(y, b, k, crit);

This is a procedure for computing augmented Perron Innovative Outlier test with the selection of

lags similar to Hall (1994) general to specific method. The selection of lags is according to the

'significant' Student-t statistics on augmentations. The break time is assumed to be known

inputs: y: a series of data, n x 1

b: time index indicating the breakpoint, b < n

k: maximum lag length

crit: critical value for selection

outputs: t: Perron Innovative Outlier (IO) statistic

td: Student-t statistic for the spike

ts: Student-t statistic on the step variable

kv: vector which identifies particular lags in augmentation

13

proc (4) = io_test(y, out, kp, critp, d);

This is a procedure for computing an Innovative Outlier test in case of an unknown single break. It

computes sequentially the Perron test (procedure per_io) and chooses the best break according to

the Zivot and Andrews(1992, JBEA) or Vogelsang and Perron (1998, IER) criteria. It requires the

procedure per_io to be placed ABOVE this on in the program.

inputs: y: series of data, n x 1

out: time index indicating the fraction of first and last observations which have to

be discarded while testing

kp: maximum lag length

critp: critical value for selection

d: selector variable

if d = 0, the Zivot-Andrews selection is performed

if d = 1, the Vogelsang-Perron selection is performed

if d = 2, sorting is according to the highest t-Student step statistic (see

Harvey, Leybourne and Newbold (2001, WP) his is probably also

one of the Vogelsang-Perron statistics (not checked yet).

WARNING: Initial Monte Carlo results shows that for d = 0 the estimated structural breakpoint is

seriously overshot. Option d = 0 is therefore not recommended. Alternatively, we have a bug in the

program.

(inputs kp and critp are required by the included per_io procedure)

outputs: t: final value of the test statistic

tt: Student-t statistic for the 'crash' dummy variable (spike)

td: Student-t statistic for the step dummy variable

b: number of the break in the series

14

References

Charemza, W., M. Lifshits and S. Makarova (2001), ‘Conditional testing for unit-root bilinearity in
financial time series: some theoretical and empirical results’, University of Leicester,
mimeo.

Hall, A. (1994), ‘Testing for a unit root in time series with pretest data-based model selection’,
Journal of Business and Economic Statistics 12, pp. 461-470.

Harvey, D.I., S.J. Leybourne and P. Newbold (2001), ‘Innovational outlier unit root tests with an
endogenously determined break in level’, University of Nottingham, mimeo.

Isaac, A.G. and D. Rapach (1996), ‘Unit root testing: a collection of procedures’. Computer
GAUSS code available at http://netec.mcc.ac.uk and http://adnetec/CodEc/
GaussAtAmericanU/GAUSSID/HTML.

Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin (1992), ‘Testing the null hypothesis of
stationarity against the alternative of a unit root’, Journal of Econometrics 54, pp. 159-178.

Leybourne, S.J. (1995), ‘Testing for unit root using forward and reverse Dickey-Fuller regressions’,
Oxford Bulletin of Economics and Statistics 57, pp. 559-571.

Maddala, G.S. and I-M. Kim (1998), Unit root, cointegration and structural change, Cambridge
University Press, Cambridge.

Perron, P. (1989), ‘The Great Crash, the oil price shock and the unit root hypothesis’, Econometrica
57, pp. 1361-1401.

Vogelsang, T.J. and P. Perron (1998), ‘Additional tests for a unit root allowing for a break in the
trend function at an unknown time’, International Economic Review 39, pp. 1073-1100.

Zivot, E. and D.W.K. Andrews (1992), ‘Further evidence on the Great Crash, the oil price shock
and the unit root hypothesis’, Journal of Business and Economic Statistics 10, pp. 251-270.

http://netec.mcc.ac.uk/

	Collection of GAUSS procedures for linear and bilinear unit root analysis

