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ABSTRACT

In this paper non-linear threshold autoregressive models are examined for use in modeling the temporal
variation in the byte-rate in Ethernet traffic. The model is comprised of a number of autoregressive pro-
cesses each of which is to be used in a specified range of amplitude of the byte-rate. The local dynamics
within each threshold range are captured by an autoregressive process. The switching between each sub-
model is conditioned on the amplitude of a lagged value of the time-series. To develop the model the
Bellcore Ethernet LAN data is used. It is shown that non-linear threshold autoregressive processes can be
used to capture the dynamics of Ethernet LAN traffic. This model also provides for both short and long-
term prediction capability and allows us to quantitatively identify the sources of long-range-dependence
features in the traffic. When the aggregate traffic is partitioned into classes based on packet sizes, certain
classes of traffic follow deterministic cyclical patterns. These periodic components arise from the process
switching between different amplitude regimes. Superposed on this fundamental period are longer cycles
that can be localized either below or above the mean byte-rate. By constructing amplitude thresholds as-
sociated with a finite set of delay parameters, the dynamics within each threshold are captured by locally
linear autoregressive processes. The aggregate process is globally nonlinear. This model is shown to pro-
vide good agreement with the marginal distributions and the correlation functions derived from the Ether-

net traffic data. In addition, simulation experiments demonstrate that the loss statistics observed in finite
buffer queues agree favorably with those generated by the measurements.

1. INTRODUCTION

The demand for the introduction of applications with real-time constraints on to data networks has
created a need for the development of accurate forecasting models for existing traffic on these networks.
Recent studies M 2! Bl of network traffic measurements have shown that data traffic exhibits significantly
higher variability than Poisson processes. This becomes evident when one observes in this traffic larger
magnitudes for the coefficient of variation for the packet inter-arrival times and monotonically increasing
values of the index of dispersion of packet counts. Data traffic has also been shown to possess temporal

correlation that persists over time-scales that range from milliseconds to over hundreds of seconds. When



the autocorrelation function (acf) decays hyperbolically for large lags, the traffic is said to be character-

ized by long-range dependence (LRD). These features prove problematic for standard traffic models.

Leland et. al. [3] analyzed Ethernet traffic on a LAN connecting workstations, file servers and per-
sonal computers. They showed that the traffic exhibits same degree of correlation when aggregated using
window sizes increasing from seconds to hours. To capture this feature of persistence in correlation over
several time scales, Leland et. al. proposed a self-similar process as a possible traffic model. For the
wide-area networks, Paxson and Floyd, [2] analyzed connection and packet arrivals in wide-area TCP
traffic and concluded that wide-area traffic, particularly at the packet level was much more bursty than
that predicted by Poisson models. Paxson and Floyd also observed that between 40% and 60% of all of
the data bytes measured was contributed by a small fraction of the largest bursts carrying FTP data bytes.
These previous studies have amply demonstrated the presence of high variability and strong correlation
patterns in traffic measurements. The basic questions resulting from these empirical studies concern: (i)
the causality of the correlation and long-range dependence, (ii) the impact of LRD on the design and per-
formance of network software and hardware elements and (iii) the choice of an appropriate model for per-
formance studies. The causality of correlation and long-range dependence has been addressed in Will-
inger et.al. ' where the superposition of individual on-off sources with heavy-tailed distributions is
shown to be a possible explanation for the observed self-similar like features in the aggregate data. Crov-
ella and Bestavros P! carried out an analysis of World Wide Web traffic and attributed the heavy tailed
distribution of document lengths to the self-similar features in the traffic. As to the impact of LRD on the
queue and multiplexer performance, recent studies © [l of network performance over a range of cell
losses, buffer sizes and network operating parameters have shown that the network operating conditions
such as utilization and buffer size determine the number of correlation time-scales that must be modeled.

Long-term correlations beyond a outside time-scale do not significantly affect network performance.

Traffic models based on second-order stationary self-similar processes have been proposed in [1].
Stationary time-series models using autoregressive moving average (ARMA) processes have been applied
in Basu et. al. [®1. Here differencing of the traffic is found necessary to account for drifts and trends in the
mean level of the data. This approach will require frequent updates from the measurements for bounding

the predicting errors.

Non-stationary behavior can arise from shifting mean levels, changing parameters of a basic



structural model or both. If one considers the sequence of byte-rate dependent transformations typically
undergone by a source traffic stream from the application to the network level, non-linear time-series
model may be applicable. Transport control protocols such as TCP impose constraints on the rate of data
flow from the source. As a result the source responses change as a function of the instantaneous load on
the transit networks and the change is observed after a finite time delay in feedback information. Both the
load on the transit networks and the feedback delay are unobserved variables for the traffic modeler. File
transfer protocols such as FIP, HT'TP, which constitute the dominant fraction of the total traffic apply
control actions in response to these unobserved variables resulting in a traffic flow that is modulated by
exogenous influences. In addition, certain amount of traffic on local area networks may arise from net-
work management protocols operating in deterministic patterns. The superposition of such disparate traf-
fic patterns without first examining individual traffic types can lead to increased variability and complex

features in the aggregate flows.

In this paper, we approach the problem of modeling dependence features in the traffic by first parti-
tioning the aggregate traffic into a set of classes which are derived from a feature space associated with
each packet arrival. This decomposition allows us to explicitly identify the components that contribute to
the high variability in the aggregate traffic. Based on these features, a non-linear time-series model is pro-
posed as a traffic model. The paper is organized as follows. In Section 2.0 we present characteristic fea-
tures of Ethernet data and some results of statistical analysis that justify the use of a non-linear model.
Section 3.1 describes the fitting of threshold autoregressive processes, a class of non-linear time-series
models to the data. Section 3.2 presents evaluation of the model with respect to marginal distributions,

autocorrelation functions and the losses in finite buffer queues. Section 4.0 presents some conclusions.

2. CHARACTERISTIC FEATURES OF ETHERNET TRAFFIC

Our approach is motivated by the temporal characteristics observed in the BellCore Ethernet traffic
measurements described and analyzed by Leland et. al. in [1]. This data set is referred to as BCAug89 and
is  available in the public domain at the Internet Traffic  Archive  site
http:/fita.ee.lbl. gov/html/contrib/BC.html. This data was also analyzed in [8] using a stationary time-series
approach. The trace consists of packet arrival time stamps and packet data sizes of a million packets
arriving in a time duration of about 3000 seconds. The measurements were made beginning at 11:25 am

on a weekday and corresponds to a normal hour of business.



There are two salient features in the BCAug89 data that motivate our inquiry. These are nonstation-
arity in the byte-rate and the temporal correlation in the packet sizes. Let us first consider the long-term
non-stationarity in the arrival rates. The time series for the byte-rate is shown in Figs. 1(a-c). The time
series is obtained by aggregating the packet data size over successive non-overlapping windows having a
fixed time duration. The byte-rate time series is shown for time intervals of 1, 10 and 100 seconds in
duration. While significant variability is retained at the 1 and 10 second time-scales, Fig. 1(c) at the 100
second time scale clearly depicts a basic structural pattern consisting of a fast transition to a peak or high
arrival-rate state followed by relatively slower rate of transition to an off-peak or low state. We can iden-
tify three such cycles in Fig. 1(c), with a cycle time period of approximately 800 seconds. We may
attribute this feature to the sources adapting to a time-scale typically governed by exogenous and unob-
served variables. For example, increased delays on the transit networks for the sources or even the pres-
ence of one bottleneck node that interconnects the LAN to the Internet can trigger the exponential back-
off mechanisms in TCP control protocols leading to a smooth transitions to the low states resulting in
reduced source rates on the local network. The long-term trend shown in Fig. 1(c) causes the mean levels

to shift in time.

The second feature we address is the temporal correlation in the packet sizes. The traffic measure-
ments consist of two random variables, the packet inter-arrival times and the packet sizes. Often in data
analysis packets are aggregated over fixed time intervals to yield a time-series for analysis. This process
neglects to take into account any dependence that may exist between the packet sizes and inter-arrival
times. Since packet sizes in data traffic depend to some extent on the application generating the packets,
one may expect differing range of packet sizes to generate different traffic dynamics. The probability dis-
tribution of packet data sizes in BCAug89 is depicted in Fig. 2. It can be seen that the data sizes are con-
centrated around values of 64, 160 — 170 and 1090 — 1518 bytes. Scatter diagrams of two and three lag
dependence in the packet sizes also depict dominant clusters in these range of packet sizes, indicating

temporal correlation within these packet size ranges.

Based on these observations, we will partition the data into three time-series. These series will be
formed from packet sizes in the low, mid and high ranges. The low, mid and high ranges are taken to be
characterized by packet sizes in the [0 — 80), [80, 180), and [180, 1518) bytes respectively. This is a

departure from previous time-series studies that only considered the aggregate of data bytes over fixed



time intervals without consideration as to the packet size. A time-interval of 0.1 seconds is used to
aggregate the individual packets. In such a case, the low range constitutes about 15% of the aggregate
data, the mid range represents 34% of the data, with the remaining 31% being made up by packets carry-
ing [180, 1518) bytes. Note this range as depicted in Fig. 2 primarily consists of 1090 and 1518 byte

packets. The three time-series are referred to as BC-LB, BC-MB, and BC-HB respectively.
2.1 Statistical Features

The time-series defined in the previous section are individually analyzed here. The histograms of
bytes per time interval and the autocorrelation functions (acfs) of the individual series are depicted in
Figs. 3(a-c) and Figs. 4 (a-c) respectively. Under the decomposition of the aggregate traffic, the average
arrival rate for the three processes are 306, 2509, and 10, 345 bytes per 0. 1 second time interval respec-
tively. The histogram of BC-LB is composed primarily of integer multiples of 64 byte packets , ranging
from a minimum of one to twenty two packets per time slot. The histograms of BC-MB and BC-HB time-
series clearly depict modes in the distribution. Observation of the acfs in Figs. (4) show that under the
decomposition, the long-range dependent structure of the aggregate traffic has been relegated primarily to
the BC-HB data. The low and mid range packet sizes exhibit relatively short-term dependence. In particu-
lar, the acf of BC-MB indicates the presence of strong cyclical behavior with a fundamental period of 8
lags corresponding to 0. 8 seconds and a e-fold time of approximately five seconds. Since over half of the

traffic data is represented by BC_MB, the temporal dynamics of this time-series will be first addressed.

Although the acf of BC-MB suggests the use of a linear ARMA model to model the short-term
cyclical behavior, such a model will fail to produce the degree of variability that exists in the data
sequence. The residuals of such a model will exhibit white noise properties, but the pdf is non-Gaussian.
Careful examination of the data reveals that in addition to the fundamental period of 0.8 seconds, the
process can exhibit longer cycles during which it sojourns in a high or a low state. An example of these
features is shown in Fig. (5) which depicts a 200 second section of the BC-MB time series where the traf-
fic resides for longer than its expected duration of 4 lags above the local mean value and exhibits similar
features in the low state as well. We note that similar features are possibly the cause of the variability in
the BC-LB and BC-HB time series, but since the surrounding envelope is less deterministic they are harder
to detect and characterize. However, insight gained by modeling the dynamics of the more structured

BC-MB series will help in this regard. Since the observed features cannot generally be captured by linear



processes we consider the application of non-linear models that can incorporate the aforementioned

dynamics.
2.2 Non-Linear Features

The sample acfs represent linear dependence in the time-series data. To test for nonlinear behavior,
conditional statistics as given by sample regression functions ! will be considered. The lag j regression
function is defined as r; = E[X,|X,_; = x]. The estimates of r; for j =1,2,3,4 derived from the
three time-series are depicted in Figs. 6(a-c). The horizontal axis represents a partition of the amplitude
range of the time series into a finite set of disjoint sets. The vertical axis represents the function r; deter-
mined by calculating the average of all samples that satisfy the regression constraint. For linear processes
that are normally distributed, the regression functions exhibit a linear trend. For the BC-LB data in Fig.
6(a), the sample regression functions are seen to be approximately linear for j =1 and j = 2, but show
weak turning points in the 300 — 800 amplitude range of the data. In comparison, the lag 2,3 and 4
regression functions for BC-MB in Fig. 6(b) show the strongest departure from linearity. Here the cyclical
properties of the data with period 8 creates the strongest deviation from linearity at a lag corresponding to
half of the cycle period 4. For higher lags, the regression functions move back in the reverse direction
towards the lag one function. The structure of these functions for BC-HB series shown in Fig. 6(c) also
show departures from linearity, however the high variance in this time-series makes these features less
pronounced in comparison to those given for Fig. 6(b). The turning points in the regression functions
indicate the presence of amplitude regimes characterized by both positive and negative dependence. As a
first departure from linearity, we consider modeling the structure in the data using piece-wise linear mod-
els at appropriate amplitude regimes. The threshold autoregressive process (TAR), proposed by Tong, 1°!
which affords the framework for constructing piece-wise linear models will be considered in the next sec-

tion.

3. THRESHOLD AUTOREGRESSIVE MODELS

The threshold autoregressive (TAR) model proposed by Tong [10], is a nonlinear model comprised
of linear AR models which are valid in disjoint subregions in amplitude. At a given time the subregion
selected will depend on the amplitudes observed over lagged time values. The TAR models and its vari-
ants have been successfully applied for modeling time-series data exhibiting cyclical properties and LRD

features 1. Particular examples that appear to exhibit the features seen in the traffic data are the classical



[12]

Wolf Sunspot numbers and Canadian Lynx data [10] , both of which have been shown to be more

accurately modeled using non-linear time series.

The model considered here will incorporate two amplitude ranges. They will be denoted as low (L)
and high (H) amplitude states. In the low-state the times-series takes on values L: (0, 7], where 7 is the
threshold value. The high state accommodates amplitudes H:[7,00). In addition three delay values
d,, d,, ds will be used in the conditional switching. This is done to capture the observed excursions about
the amplitude 7. For such a case, the AR model selected will be determined by the amplitude of the time
series at three previous points in time. The total number of amplitude conditions that occur is equal to 23
Each case will be labeled R; where the index j takes on integral values between 1 and 8. Fig. 8 depicts a
schematic of the location of TAR model parameters for one subregion. In this figure the amplitude of
x(n) at three delay values (relative to 7 ) classify the time-series model to be used. In Table I, the rest of

the cases are shown. The first column denotes the threshold condition R; , whereas the next three

i
columns show in which of the two amplitude ranges x(n — d;) resides. The TAR model allows one to
change the parameters of the AR process over time by virtue of the switching rule. This is done based on

the amplitude of the time-series at delayed values. In each of the cases R the process evolves as a stable

AR process, governed by the correlations within that region.

More delay parameters may be accommodated by increasing the number of subregions to be used
to characterize the data. In general, the amplitude condition may be based on the lagged variables {
x(n—dy),x(n—d,), -, x(n—d,;)}. Each case will be denoted by R;, where j=1,2,-- 2" The

current value of the byte-rate at time 7 will be governed by an autoregressive process of order & ;.

ko _
x(my=a$’ + Y, a" x(n—i)+ ¢/ (n) {x(n—d)),x(n—dy),-x(n—d)} € R, (1)
i=1

Here the term e’ (1) represents samples derived from an independent identically distributed random pro-
cess having zero mean and finite variance. When subregion constraints are violated, the process is
switched to the subregion model that obeys the proper amplitude and delay constraints. The delay param-
eters afford the flexibility of capturing persistence phenomenon at the required amplitudes. This is an
important feature when the process continues to reside above the mean value. This feature can be cap-
tured by including delay values beyond half of the fundamental period of oscillation. Extended sojourns

in the high byte-rate state is an important feature in delay management, whereas dwell-time in the low



byte-rate state has impact on multiplexing efficiency. Therefore the thresholds R; and delay parameters

should be carefully chosen to capture the critical elements of the observed dynamics.
3.1 TAR Model Parameter Selection

To construct the model, the optimal values of 7, and the delay d;,i = 1,2,--- must be selected
along with the coefficients of the local AR processes for each subregion. We will describe the parameter
selection process used in the analysis of the BC-MB data. This data set exhibits the most interesting non-
linear features of the three. Inspection of the sample regression functions for this data given in Fig. 5(b)
suggests that the threshold 7 delimiting the low and high states be in the amplitude range 2000 —4000.
This is necessary if one is to model the change in slope of the regression function in this region of ampli-
tudes. 'This region coincides with the location of the local mean value. We constrain the problem by fix-
ing the number of delay parameters to three. The maximum delay value captures the dependence in the
data. For the BC-MB data set, the three delay values { d;,d,,d5 } : { 1,4,7 } were found to be ade-
quate. Using these lag parameters, the threshold value 7 and the local AR coefficients a’, and the vari-

ance of the residual 0'12- are determined using least-squares estimators.

To estimate the local AR parameters, the data is searched for all samples x(7) that satisfy the given

amplitude and delay constraints , R ;. For each case R, the samples x/, x/ ---, x/
J J i* iy

;, of the time-series
S

represent the 7; samples that satisty constraint R;. These n; samples will be denoted by the vector,

x' = (xij1 e e, xij ', For this data, the kj-h order linear model coefficients are evaluated.
11/'
x'=Ad +¢ 3
where a’: (a}, aj...., ai_)T and A’ isan; x k; + 1 matrix comprised of the k; values that lag the ele-
J
ments of x”.
i j j i ]
Xy x5 Xi—k;
J J J
1 Xpp1 KXo+ oo Xy,
Al = 4
J J J
1 AT I R T AT A
L s / 7 n

and gj = (e,-l, ..... , e T is the residual error vector. Since 71 > k j» the solution of the system of
Ilj



equations in Eq. (4) is the least-squares estimate of glj and is denoted as Qj . The least-squares error,

T=x/-Ald (5)

[

The error variance 0'12- = 1&/IP/n ; represents the approximate Maximum Likelihood Estimate of the noise
variance for the jth subregion.

In order the obtain the complete TAR model one must determine the optimal choice of the parame-

131 6f the sub-models as the

ters. To do so, we will use the sum of the Akaike Information Criteria (AIC)
performance measure. The process of TAR parameter estimation is that outlined in Tong|9] and and will

be briefly described here.

For the fixed set of delay parameters d;, d,, .. d5 the threshold amplitude 7 is sampled uniformly
between 2400 and 3600 in 200 byte-per second intervals. The maximum model order of the AR model
was set equal to 30. For each subregion R; we determined the least-squares estimates of the local AR
coefficient using Eqn. (4) for each order ranging from 1 to 30. In each case the residual errors &/ deter-
mine the best model order for the subregion using the Akaike Information Criteria (AIC). The AIC is

given by

AIC(k)=n, 1n{||é(k)||2/n ,} +2(k +1) ©)

where 71, is the sample size of the fitted data and £ is the candidate model order. The optimum order X ;
for the jth sub-model corresponds to the value k that yields the minimum value for the AIC statistic. We

denote this as AIC(k ;) for the 7™ subregion.

This process is repeated for all subregions and for each value of 7. The total AIC as a function of

the threshold and delay parameters is computed as

8
AIC,pu(d, 7) = Y, AIC(k)) )

j=1
where d = {d,, d,,ds}. The optimal threshold parameter 7 and AR parameters is one which yields the

minimum AIC,,,,/(d, 7).

The process outlined for TAR parameter estimation is carried out on the BC-MB set of data. Since
the arrival process is non-stationary in the mean, we consider the TAR model fitting over segments of the

data where the arrival rate as calculated over 100 second intervals does not exhibit significant deviation.



10

Incorporating up to seven lagged variables in the delay parameters d = (1,4,7) in the constraints, allows
the isolation of cases where the process can cycle for twice its expected duration in the selected subre-
gions. The threshold 7 that results from the minimum AIC criteria generally falls in the 2800 — 3000
byte range. An example of the minimum AIC,,,,;(d, ) for various values of 7 is shown in Table 2, for
three different ensembles of length 300 in the BC-MB data. These results are consistent as the ensemble
sizes are increased, although the magnitude of the AIC,,,,; values also increase, due to an increase in the
range of the residual error. In most all cases considered the threshold that yields the minimum AIC,,,,
value is around the mean value of the data sequence considered. The optimal AR orders for the different
regimes however vary up to k; = 25 for some regimes. An example of a segment of the BC — MB data
considered in the model and results of the TAR simulation are depicted in Figs 7(a) and (b). In generating
the TAR model simulation, only the initial conditions were determined from the measurements. Subse-
quent values were generated using the TAR parameter estimates and additive noise variables for each sub-
region. The noise process was derived from the empirical distributions of the error residuals obtained dur-
ing the fitting of the measurements to the model. The acfs of the residual errors were found to pass the
white noise test for all of the eight subregions. In the simulation, any negative values that resulted were

set to be equal to zero.

The structural patterns in the BC-MB time-series can be discerned to a large extent due to a reason-
ably distinct partition between the pdfs of the low and high states as seen in the histogram of Fig. 3(b).
Such a feature is less evident for the BC-HB time series. Although the acf for this data, as shown in Fig.
4(c) depicts weak cyclical structure at about the same period as in BC-MB. Based on the insight obtained
from analyzing the data in BC-MB, a similar TAR model was considered for the BC-HB data as well.
Since this data exhibits a longer range of dependence than that in BC-MB , the number of delay variables
was required to be increased from 3 to 4. In particular, the set of delay parameters found appropriate for
BC-HB time-series were , d:(1,3,7,10) , accounting for dependence up to 10 prior lags. The results

that evaluate the proposed models for BC-MB and BC-HB are presented in the next section.
3.2 Model Evaluation

In this section we present several statistical features that validate the TAR model against measured
data. Results are shown in Figs. 9 and 10 for the BC-MB and BC-HB data. First agreement between

marginal distributions, autocorrelation functions and counting statistics are considered. The QQ
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(quantile-quantile) plots 14!

provide a visual assessment of the agreement of the distributions of the byte
amplitudes in the time series. Figs 9(a) and 10(a) depict the QQ plots for the simulated and measured
data. Figs. 9(b) and 10(b) depict the match between the autocorrelations functions from the measurements
and simulation. For both traces, the model captures the dependence in the data upto about 60 lags. Figs.
9(c) and 10(c) depict the counting statistics of N,, representing the total number of bytes arriving in a
time interval ¢. This feature is captured in terms of the expected value £[N,], the variance Var[N,], and
the index of dispersion ID[N,] = Var[N,]/E[N,]. The index of dispersion represents the degree of vari-
ation of this traffic, relative to a Poisson process for which the index of dispersion converges to a constant
value of unity. This second order descriptor has been used to capture the burstiness properties of arrival

processes. The TAR model is seen to do reasonably well in capturing the traffic variability as measured by

these statistics.

Next the performance of the model is evaluated in a queue consisting of a fixed buffer size and a
constant service rate. The buffer size is expressed in units of seconds. This parameter represents the maxi-
mum delay experienced by the arrivals. For given source average (7, ) and peak rates ( 7, ), the buffer
drain rate C is incremented from r,,, to r,. For each value of C the losses are expressed in terms of the

bit loss ratio,

BLR = Number of bits lost | Total number in Data Sequence

Figs. 11(a-b) depict the bit loss ratios obtained by driving queue simulations using TAR model gen-
erated data. These results are compared to the losses experienced by the measurements. The BLRs are
depicted for buffer sizes of 0. 01 and 0. 1 seconds for the BC-MB data. Since the dependence range in
this data is relatively short-term, for larger buffer sizes, no losses are observed. However, losses are expe-
rienced for larger buffer sizes for the BC-HB time-series. For this case the results are shown upto a buffer
size of 0.5 second. In calculation of the BLRs, twenty ensembles of the TAR simulated data, each
10, 000 samples in length were considered. The average of the BLRs experienced over this set is depicted

in Figs. 10. The results indicate that the TAR model captures the relevant long-range features in the data.

4. CONCLUSIONS

This paper has presented a traffic model for Ethernet LAN data using non-linear threshold autore-

gressive models. The traffic analysis carried out on one of the Bellcore Ethernet traces is based on
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decomposition of the aggregate traffic into three components based on packet sizes. This process high-
lights a salient feature in the data that is captured in the mid-range of packet sizes from [ 80 — 180 ]
bytes. This set comprises over half of the measured data and exhibits deterministic cyclical patterns of
period 0. 8 seconds. Superposed on this pattern are randomly occurring longer cycles where the process
sojourns either above or below the mean byte rate. These features cause the long-range dependence char-
acteristics. Sample regression functions for this data show clear departures from linear behavior in certain
amplitude regimes. A threshold autoregressive model with two amplitude thresholds and upto three delay
parameters is shown to capture these features in the data. The time-series formed from the mid-range
packet sizes exhibit clearly discernible trends due to the reduced variance in their distribution. Based on
this insight, it was determined that the same structural patterns cause the LRD features in the high-range
of packet sizes that comprise about 35% of the data in the tail of the distribution, but the high variance in
this range reduces the detection capacity of these patterns. By increasing the delay parameters to four
lags, the TAR model was shown to adequately model the data for the high-byte range time-series as well.
The TAR model simulated traces were compared with 500 second segments of the Ethernet data and
shown to agree favorably both in terms of the marginal distributions, autocorrelation functions and count-
ing statistics. The time-scales considered in the TAR model were also shown to be adequate to match the

losses in finite-buffer queues with buffer sizes ranging from 0. 01 to 0. 5 seconds.
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Fig. 11 Bit loss ratios for buffer sizes ranging from 0. 01 to 0. 5 seconds. Solid lines represent
TAR model simulations and symbols depict results from measurements.



Regime R; x(n—d;) x(n—d,) x(n—d3)
1 L L L
2 L L H
3 L H L
4 L H H
5 H L L
6 H L H
7 H H L
8 H H H

20

Table 1: The subregion classification for the BC-MB data. L and H denote a low and high
states. Ex. Row 3 denotes the constraint {x(n—d,) € L ,x(n—d,) € H and x(n—d3) €L }.

Threshold | AIC,,u,

7 ensemble 1  ensemble 2  ensemble 3  ensemble 4
2200.000 96.36282 75.07628 94.09926 76.19842
2400.000 89.06292 88.52559 80.53676 78.62704
2600.000 89.71453 83.96621 84.24383 94.15655
2800.000 85.07215 83.84380 86.25938 90.77125
3000.000 82.40987 100.1935 81.61975 82.95047
3200.000 82.19209 96.75581 08.33761 70.82937
3400.000 89.118%4 103.1935 95.15688 84.69061
3600.000 87.23269 101.6886 105.6746 78.82215

Table 2 : AIC,,,,(7,d) estimates for TAR model fitting for three different ensembles of length
300 samples from the BC-MB data.
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