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1 Joint pdf for PMA(1)

The PMA(1) process is non-Markovian but a one-dependent strictly stationary stochastic process

(Watson, 1954). It is straightforward to show that {Yt}
i.i.d.
∼ P(σ, α) marginally. The stationary

marginal probability density function (pdf) fYt(y) follows from the survival function F Yt(y) =
P(Yt ≥ y) = 1/(1 + (y/σ)α), and is given by
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From (1) the mean and variance of {Yt, t ∈ Z} are given by, respectively,
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where we used the standard integral formula
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with Γ(u)Γ(1 − u) = π csc(πu), the cosecant identity (u 6= 1), Γ(2 + u) = (1 + u)Γ(1 + u). Note
that csc(z) = 1/ sin(z).

A closed form representation of the joint pdf can be obtained for the PMA(1) process by
first considering the joint survival function F Yt,Yt−1(y1, y2) of (Yt, Yt−1). That is

F Yt,Yt−1(y1, y2) = P(Yt ≥ y1, Yt−1 ≥ y2) = P(p−1/αεt−1 ≥ y1, p
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By the independence of the εt’s, and letting zi = (yi/σ)α, i ∈ {1, 2}, (5) can be written as
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if y1 ≥ p(1/α)y2 ≥ 0.
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Since F Yt,Yt−1(y1, y2) = 1 − FYt(y1) − FYt−1(y2) + FYt,Yt−1(y1, y2), it follows that the joint pdf



fYt,Yt−1(y1, y2) = ∂2FYt,Yt−1(y1, y2)/∂y1∂y2 is given by
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The conditional pdf fYt|Yt−1
(y1|y2) = fYt,Yt−1(y1, y2)/fYt−1(y2) follows from (1) and (7) directly.

2 Autocorrelation for PMA(1)

It is easy to verify that the overall pattern of the ACF of the PMA(1) cuts off after lag one. This
property is similar to the cut-off property of the linear MA(1) process with i.i.d. innovations
following a symmetric distribution. Using (7) with σ = 1, E[YtYt−1] can be compactly written
as
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Explicit representations for each of these terms can be obtained with the help of Mathematica.
This approach gives rise to lengthy and complicated expressions involving the Gauss hypergeo-
metric function 2F1[a, b; c; x].

Now using (2) and (3) with σ = 1, the Pearson ACF at lag 1 of the PMA(1) process is given
by

ρ(1) =
Cov(Yt, Yt−1)
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For 1 < α < 2 the ACF is not defined.

3 ACVF and ACF for PMA(1): Gini-based results

Assuming that {Yt, t ∈ Z} has finite second-order moments, it is not difficult to obtain a
closed form representation for the Gini-based (G) autocovariance of lag zero, i.e. γ(G)(0) =
Cov(Yt, F (Yt)). In fact, because the εt’s are i.i.d., we have
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Figure 1: Gini-based ACFs for the PMA(1) and for the PAR(1) process. Figure 1(c) includes
the Pearson ACF (dashed-dotted line) for the PAR(1) process with α = 2.1.

3



where in the last step we used (4). Then substituting (2) and (10) into γ(G)(`) = 4
{
E[YtF (Yt−`)]−
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}
gives
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It is a more challenging task to obtain explicit expressions for γ(G)(`) for ` = ±1. This requires
the evaluation of E[YtF (Yt−1)] and E[YtF (Yt+1)]. In practice, however, γ(G)(`) and ρ(G)(`) =
γ(G1)(`)/γ(G)(0), can best be approximated by Monte Carlo simulation.

As an example, consider a type-III PMA(1) process with parameters p and α. We estimated
ρ(G)(`) as a function of 0 < p < 1 for α = 1.1, 1.5, and 2.1. In each case the number of
replications was set at 1,000 and the series length at n = 10, 000. As a natural estimator of
γ(G)(`), we use

γ̂ (G)(`) =
1

n − ` − 1

n−∑̀

t=1

(Yt+` − Y ((`+1):n))(R(Yt) − R(Y(1:(n−`))), (12)

where Y ((`+1):n) =
∑n

t=`+1 Yt/(n−`) (sample mean of the last n−` observations), R(Yt) denotes

the rank of Yt (divided by the sample size), and R(Y(i:j)) =
∑j

t=i R(Yt)/(j−i+1). Figure 1(a)–(c)
shows ρ̂ (G)(`) for lags ` = ±1.

For comparison purposes, we also plot the lag-one Gini-ACF for a PAR(1) process. Carcea
and Serfling (2015) showed that in this case

ρ(G)(−1) =
αp(1 − p1/α)

1 − p
, ρ(G)(1) =

αp(p−1/α − 1)
1 − p

= p−1/αρ(G1)(−1). (13)

Explicit expressions of ρ(G)(`) are not available for ` 6= ±1.
We see that the overall pattern of the PMA(1) autocorrelations is very different from that

of the PAR(1) autocorrelations. For α = 1.1 the interquartile range of PMA(1) sample ACFs
at lag +1 is equal to [0.09, 0.39] while at lag –1 the interquartile range is much shorter, i.e.,
[0.01, 0.02]. The interquartile range tends to become smaller as α increases to 1.5 and 2.1. On
the other hand, the ACFs for the PAR(1) model have a wide range of values which are quite
different from the ones obtained for the PMA(1) model.

We also observe that sets of autocorrelations for the PAR(1) model change considerably
with values of p but less with α. Figure 1(c) contains a plot of the lag-one Pearson ACF for
the PAR(1) process with α = 2.1 (dashed-dotted line). We see that its curve lies between the
curves of ρ(G)(−1) and ρ(G)(+1). This indicates that the theoretical Pearson ACF only detects
information about the symmetric structure of a time series process in the finite variance case. On
the other hand, the Gini autocorrelations allow the data generating process to be asymmetric.

4 Block-length b and size of test statistic T (G)(m)

A small simulation study illustrates the influence of the block-length b on the empirical size of
the T (G)(m) test statistic, In particular, Table 1 below reports results for n = 200, 400, with
α = 1.5. It can be seen that for both sample sizes the empirical sizes are reasonably stable and
relatively close to the 5% nominal significance level. It is interesting to compare these results
with the size results reported in Table 1 (column 12) of the main manuscript using the moving
block bootstrap procedure of HHL with cross-validation (CV). Clearly, the difference between
both bootstrap approaches (fixed block-length versus CV-based block-length) is minimal.
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Table 1: Empirical size (in %) of the T (G)(m) test statistic at the 5% nominal significance
level and computed from 1,000 independent realizations of a linear MA(1) model of the form
Yt = Zt + 0.5Zt−1, and four fixed block-lengths b.

n = 200 n = 400
m b = 10 b = 15 b = 20 b = 25 b = 10 b = 15 b = 20 b = 25

5 4.7 5.3 4.6 5.6 4.3 4.9 3.7 4.3
10 5.6 5.1 5.3 5.1 4.7 5.8 4.8 6.2
20 4.3 5.8 5.6 5.4 4.3 4.3 4.7 4.3
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